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THE SIMPLE MEANING OF COMPLEX RATES OF RETURN

Axel Pierru

Economics Department, IFP, Rueil-Malmaison, France

This note proposes a coherent system enabling interpretation and manip-
ulation of rates of interest (or rates of return) including an imaginary
component. This may help to shed new light on equations involving com-
plex solutions, especially when valuing investment projects. In addition, a
series of real rates can be associated with any complex rate. Each real rate
can then be interpreted as a portfolio’s expected return. As an example of
application, when a project involves the joint production of two outputs
whose markets have not the same risk, our approach allows the project’s
cash flow to be discounted at a single (but complex) rate.

INTRODUCTION

The economic and financial literature has long referred to the existence
of rates of return including an imaginary component (see, for example,
Dorfman (1981); Hazen (2003); Hartman and Schafrick (2004); Osborne
(2005)), without, however, proposing an interpretation of these. Thus, as
Osborne (2005) said: “The financial meaning of a complex solution that
has an imaginary component is not clear. Perhaps there is none” (p. 165). In
order to rectify this situation, this note proposes a coherent system enabling
interpretation and manipulation of complex rates of interest. This may help
to shed new light on equations involving complex solutions, especially
when valuing investment projects. For instance, when a project involves
the joint production of two outputs whose markets are subject to different
risks, our approach allows the project’s cash flows to be discounted at a
single (but complex) rate.

Address correspondence to Axel Pierru, IFP, 228-232 Avenue Napoleon Bonaparte, 92852,
Rueil-Malmaison, France. E-mail: axel.pierru@ifp.fr
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106 A. Pierru

The interpretation of complex interest rates—or complex rates of
return—is elaborated in the following section. We then show that a se-
ries of real rates can be associated with any complex rate. We then provide
a practical application of our approach. The last section concludes.

A PROPOSED MEANING FOR COMPLEX RATES OF INTEREST

A Portfolio Composed of Two Assets with Differing Risks

If concrete meaning is to be given to complex internal rates of return, a
symbolic meaning must be given to imaginary unit i. To do this, we make
use of portfolios comprising two assets A and B. Because these assets are
not subject to the same risk, they have different expected returns ρA and
ρB for the period under consideration.

We assume here that it is possible to hold positive (i.e., long) or negative
(i.e., short) positions for these two assets. The value of a portfolio is the
sum of the value held in asset A and of that held in asset B. The risk of the
portfolio, and therefore its expected return, depends on the proportion of
each asset in the total value.

We now introduce the imaginary unit i as an exchange operator that
leads to modification in the portfolio’s composition and therefore in its
risk.

Imaginary Unit i Interpreted As an Exchange Operator

Imaginary unit i will be used to symbolize the execution of two simulta-
neous operations: the sale of one dollar of asset A and the purchase of one
dollar of asset B. These two operations in fact amount to exchanging one
dollar of asset A for one dollar of asset B. For that reason, i is interpreted
as an exchange operator that leads to a change in the risk but not the value
of the portfolio.

Consequently, we note iy the transaction to exchange y dollars of asset
A for y dollars of asset B. Because exchanging one dollar y times amounts
to directly exchanging y dollars, we can write yi = iy. Such an exchange
has a twofold impact on portfolio composition: the amount held in asset
A is reduced by y dollars and the amount held in asset B is increased by y
dollars.

We can also introduce an operator −i to symbolize the reverse exchange
operation, the exchange of one dollar of asset B for one dollar of asset A.
Because iy = (−i)(−y), there will be two possible interpretations of iy:
the exchange of y dollars of asset A for y dollars of asset B or the exchange
of −y dollars of asset B for −y dollars of asset A. These two operations
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The Simple Meaning of Complex Rates of Return 107

in fact modify the portfolio in the same way, which in theory makes it
possible to use both exchange operators in conjunction. However, for the
sake of clarity, iy will in the rest of the article be interpreted as an operation
exchanging y dollars of asset A for y dollars of asset B.

Consistently, the imaginary unit i will also be used to describe the
composition of any given portfolio (i.e., the portfolio’s amount invested
in asset A and that invested in asset B). A portfolio will now be denoted
u + iv, which reads as “u dollars invested in asset A plus v dollars invested
in asset B.” Here, the symbol i represents asset B and not an exchange
operation as such. The portfolio’s value is u + v.

Definition of a Complex Rate of Interest

We shall now suggest a meaning for the capitalization of a portfolio at
the interest rate a + ib over a period. To do this, we shall assume that
this capitalization involves the investment of the two assets making up the
portfolio (at their respective expected returns) over the period, followed,
at the end of the period, by an exchange operation. These two operations
are defined according to the following rules:

• During the period, the expected rate of return for asset A is ρA =
a + b, and that for asset B is ρB = a − b; the return generated by
each asset is immediately reinvested in the same asset.

• The exchange operation carried out at the end of the period involves
an amount equal to b multiplied by the value of the portfolio at the
start of the period.

As an illustration, we shall begin with consideration of a portfolio ini-
tially made up of a single asset (with a zero position in the other asset).

Let us first suppose that this portfolio comprises only one dollar of
asset A (i.e., the portfolio is denoted as 1). The return (reinvested in asset
A) expected at the end of the period stands at a + b dollars. An exchange
operation is then performed: b dollars of asset A are exchanged for b dollars
of asset B. The portfolio available at the commencement of the following
period therefore comprises 1 + a dollars of asset A and b dollars of asset
B. This is consistent with the following calculation:

1 × (1 + a + ib) = 1 + a + ib

Let us now suppose that the portfolio is made up of one dollar of asset
B (i.e., the portfolio is denoted as i). The expected return at the end of the
period is a − b dollars, which is reinvested in asset B. Then b dollars of
asset A are exchanged for b dollars of asset B, which generates a short
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108 A. Pierru

position of b dollars in asset A. The resulting portfolio comprises −b
dollars of asset A and 1 + (a − b) + b = 1 + a dollars of asset B. This is
consistent with the following calculation:

i × (1 + a + ib) = −b + i(1 + a)

In more general terms, a portfolio is composed of the amount held in
asset A and that held in asset B. The complex rate of interest should in
this case be applied to each of these two amounts following the rules
set out above, with the resulting positions held in each asset being then
added together. As a result, portfolios and rates of interest can now be
manipulated following the algebraic rules specific to complex numbers.
Capitalization of the portfolio u + iv at the complex rate a + ib, applying
the rules previously defined, thus leads at the end of the period to a portfolio
identical to the figure obtained if we multiply the two complex numbers:

(u + iv)(1 + a + ib) = (1 + a)u − vb + i((1 + a)v + bu)

We should note that in the context of discrete time we are using a (com-
plex) capitalization factor written in its algebraic form. A demonstration
is provided in the Appendix to show that the corresponding instantaneous
rate of interest in continuous time can be expressed very simply as a func-
tion of the modulus and phase angle of this capitalization factor. The phase
angle can be interpreted as the imaginary component of the instantaneous
rate of interest.

Considering the imaginary unit i to be an exchange operator thus enables
us to define, interpret, and manipulate complex rates of interest. Complex
discounting can be defined immediately as the reverse operation to complex
capitalization.

Special Cases

The capitalization of a portfolio at a real interest rate amounts to choosing
assets A and B with the same expected return. It is as if the portfolio were
composed exclusively of assets subject to the same risk. In this sense, our
definition of a complex (discount or interest) rate generalizes the classic
case.

Let us now look at one dollar of asset A capitalized at a factor i (equal
to 1 plus the complex rate −1 + i). Because here a + b = −1 + 1 = 0,
only one dollar, invested in asset A, is recovered at the end of the first
period. This dollar of asset A is then exchanged for one dollar of asset B.
This result shows clearly that the definition proposed for complex rates
of interest is a generalization of the exchange operator (i.e., capitalizing

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
i
e
r
r
u
,
 
A
x
e
l
]
 
A
t
:
 
0
8
:
0
9
 
7
 
J
u
n
e
 
2
0
1
0



The Simple Meaning of Complex Rates of Return 109

at factor i does indeed amount to performing the corresponding exchange
operation).

Extension of Complex Notation to Cash Flows

All cash flows received are susceptible to modify the existing portfolio.
Consequently, we now extend to cash flows the complex notation initially
defined for portfolios, by considering that the real component of a cash
flow represents a (long or short) amount held in asset A and the imaginary
component an amount held in asset B. Cash flows are therefore considered
as bidimensional.

A complex cash flow is thus a portfolio in itself. In practice, for project
valuation purposes, it may appear relevant to manipulate cash flows in-
cluding an imaginary component; for example, when the project concerned
generates two simultaneous cash flows with different risk exposures. The
expected returns of assets A and B may then reflect these two distinct risk
exposures. An example of this type is discussed later in the article.

Manipulation of (usual) cash flows defined as real numbers thus amounts
to considering them as long positions in asset A when they are positive
and short positions in asset A when they are negative. This is the implicit
assumption in the classic calculation of a project’s internal rate of return,
where a negative cash flow, for instance, an investment outlay, can be
viewed as a short position in capital (i.e., a firm’s liability toward its capital
providers). Using the project’s real internal rate of return (i.e., with a zero
imaginary component) allows for always considering a one-dimensional
portfolio (i.e., with a position in asset B equal to zero). On the contrary,
if the internal rate of return under consideration is the complex number
a + ib, some of asset A is exchanged for some of asset B at the end of
each period, with the expected returns on assets A and B being a + b and
a − b, respectively.

Interpretation of the Equation i2 = −1

The algebra of complex numbers is entirely based on the postulated exis-
tence of the imaginary unit i whose sole extraordinary property is that its
square is −1. For this reason, it can be seen to be fundamental to interpret
this property in the context of our present approach.

Consider the problem raised by the calculation of the internal rate of
return for a stream of two cash flows involving the spending of one dollar
in period 0 followed by the spending of another dollar in period 2. The
capitalization factor making this operation possible is either imaginary unit
i or −i, because −1 + i2(−1) = −1 + (−i)2(−1) = 0. The internal rates
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110 A. Pierru

of return of this stream of two cash flows are consequently −1 + i and
−1 − i.

Take the example of the complex rate −1 + i. During the first period,
capitalizing a negative real cash flow of one dollar (i.e., a short position
of one dollar in asset A) at this rate does not generate any return, because
asset A’s expected return is here equal to zero (= −1 + 1). Because the
imaginary component of the rate is 1 and the portfolio’s initial value is −1,
a transaction consisting of the exchange of the short position of one dollar
in asset A for a short position of one dollar in asset B is then performed
at the end of the first period. Consequently, at the start of the second
period, the portfolio consists in a short position of one dollar in asset B.
During the second period, this portfolio is again invested at the rate −1 + i,
which corresponds to an asset B’s expected return of −200% (= −1 − 1).
This therefore results in a long (positive) position of one dollar in asset B.
Because the portfolio’s value at the end of period 1 is still −1, a transaction
consisting of the exchange of a short position of one dollar in asset A for
a short position of one dollar in asset B is then performed again. This
transaction offsets the long position of one dollar in asset B and generates
a short position of one dollar in asset A. The upshot of this is therefore a
short position of one dollar in asset A, corresponding to the spending of
one dollar incurred in the second period.

Another interpretation can be given to the equation −i2 = 1. We have
seen previously that we could have introduced explicitly the operator −i,
representing the exchange of one dollar of asset B for one dollar of asset A.
The equation −i2 = i × (−i) = 1 can then be interpreted in the following
way: successively applying two reverse exchange operations to a given
portfolio takes us back to this portfolio.

WEIGHTED AVERAGE EXPECTED RETURNS ASSOCIATED
WITH A COMPLEX RATE OF RETURN

By using the interpretations developed in the previous sections, we show
here that a series of real rates of return can be associated with a complex
rate of return. Each one of these real rates of return is the portfolio’s return
expected during a given period and is therefore a weighted average of
expected returns ρA and ρB .

In brief, a portfolio’s composition (i.e., the amounts invested in assets A
and B respectively) is now described as a complex number. The risk of the
portfolio, and therefore its expected return, depends on this composition.
Its value, which corresponds to the total amount that would result from its
liquidation, is a real number equal to the sum of the real and imaginary
components of the complex number describing its composition. In the
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The Simple Meaning of Complex Rates of Return 111

same way, a cash flow is described by a complex number. The approach
used in this section is analogous to that enabling determination of the
discount rate to be used with the standard weighted average cost of capital
(WACC) method in classic capital budgeting. For instance, Chambers et al.
(1982) and Pierru (2009) used it to demonstrate the consistency of various
conventional methods.

The following notations relate to a cash flow stream covering N peri-
ods. The expected cash flow for year n (n = 0, 1, . . . , N) is un + ivn. Its
expected total amount is therefore un + vn, where un is invested in asset A
and vn in asset B. It is assumed that this cash flow stream is to be discounted
at the complex rate a + ib.

The value of the cash flow stream under consideration corresponds to
the value of a portfolio composed of assets A and B, with ρA = a + b
and ρB = a − b. Each year, the composition of this portfolio is given
by the discounted sum of the subsequent cash flows. Let us denote this
composition at the end of year n as Un + ivn. We have:

Un + ivn =
N∑

k=n+1

uk + ivk

(1 + a + ib)k−n
n = 0, 1, . . . , N − 1 (1)

UN + ivN = 0 (2)

Equation (2) simply means that positions in both assets A and B are equal to
zero at the end of year N (when all cash flows have already been generated).

Equation (1) can also be rewritten using recurrence:

Un + ivn = Un+1 + un+1 + i(Vn+1 + vn+1)

1 + a + ib

Let αn be the proportion of the value of the portfolio held in asset A at the
end of year n:

αn = Un

Un + Vn

(3)

The (average) return wn on the portfolio expected in year n + 1 is therefore:

wn = αnρA + (1 − αn)ρB (4)

The real discount rate wn, defined as a weighted average expected return
(WAER) in Equation (4), must be applied to the total amounts of the cash
flows from year n + 1. In year 0, the value of the portfolio U0 + V0 is
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112 A. Pierru

therefore given by the following relationship:

U0 + V0 =
N∑

n=1

un + vn

n−1∏
k=0

(1 + wk)

(5)

For a given stream of cash flows, it is thus possible in this way to associate
a series of real discount rates (i.e., a series of WAER) with a complex
discount rate. The value of the portfolio can be obtained:

• either by discounting the cash flows at the complex rate
• or by discounting the total cash flow amounts with the associated

series of real rates.

It should be noted that discounting all the cash flows at the same complex
rate leads to variations in portfolio composition (i.e., αn is not constant).
As a consequence, a complex discount rate corresponds to a series of real
discount rates (and not a single real rate).

As a numerical illustration, consider the complex rate of interest 0.1 +
0.08i. We therefore have ρA = 0.18 and ρB = 0.02. Let one dollar be
invested in year 0 in asset A and capitalized for 3 years at that rate. The
value of the portfolio is $1.60 by the end of year 3, since we have:

(1.1 + 0.08i)3 = 1.31 + 0.29i

This value can also be determined with the (WAER) real rates. By using
(1), (3), and (4), we obtain:

U0 + iv0 = 1, U1 + iv1 = 1.1 + 0.08i, U2 + iv2 = (1.1 + 0.08i)2

= 1.2036 + 0.176i

α0 = 1, α1 = 1.1

1.18
= 0.93, α2 = 1.2036

1.2036 + 0.176
= 0.87,

w0 = 0.18, w1 = (0.93 × 0.18) + (0.07 × 0.02) = 0.169

w2 = (0.87 × 0.18) + (0.13 × 0.02) = 0.16.

We thus have:

(1 + w0)(1 + w1)(1 + w2) = 1.18 × 1.169 × 1.16 = 1.60.

We can now apply this result to a complex internal rate of return, denoted
a + ib, of a classic stream of real cash flows. We need only choose a + ib
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The Simple Meaning of Complex Rates of Return 113

such that, in year 0, the value of the portfolio is the opposite of the cash
flow. Therefore, retaining the previous notations, we must have:

U0 + u0 =
N∑

n=0

un

(1 + a + ib)n
= 0 (6)

Equation (6) is a specific case of (1) since here all cash flows are real. In
short, (6) simply defines a + ib as being an internal rate of return of the
investment project generating the stream of cash flows {u0, u1, . . . , uN }.
By using (3) and (4), a series of real rates wk can therefore be associated
with a + ib, and (5) is here written:

u0 +
N∑

n=1

un

n−1∏
k=0

(1 + wk)

= 0

As shown previously, the real rate wk can be interpreted as the portfolio’s
return expected for period k + 1. A series of WAER can therefore be
associated with each project’s complex rate of return. When the project’s
internal rate of return considered, denoted as r, is a real number, the series
of WAER coincides with this rate (i.e., for every k: wk = ρA = r).

EXAMPLE OF APPLICATION: INVESTMENT PROJECT WITH
JOINT PRODUCTS WHOSE MARKETS HAVE DIFFERENT RISKS

Consider a company planning to invest $15 million in industrial equipment
enabling production of good A for the following 3 years. Due to the nature
of the envisaged industrial process, a co-product known as good B is
produced simultaneously. Because these goods A and B are sold on distinct
markets, they generate two cash flow streams whose exposures to risk are
different. The expected annual (income) cash flow is $6 million for good
A and $500,000 for good B. In the absence of further information, is it
possible to determine an internal rate of return for this investment project?
The conventional approach does not provide us with any straightforward
solution to this problem, because cash flows with different exposures to
risk1 should be discounted at different rates. Because the risks of the two
cash flow streams differ, it does not seem possible to take them together to
calculate a single internal rate of return for the project as a whole.

1According to the Capital Asset Pricing Model (CAPM), only the exposure of an asset’s
return to the systematic risk involves a risk premium in the asset’s expected return.
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114 A. Pierru

We now propose to apply our approach in order to determine and in-
terpret a complex internal rate of return. To do this, we shall consider
that the project’s annual cash flow is bidimensional and equal to 6 + 0.5i
(in million dollars). According to the interpretation elaborated in previous
sections, this (complex) notation allows us to account for the different risk
exposures of the two cash flow streams. Consequently, we will determine
the expected returns on assets A and B, considering that asset A (asset
B) is as risky as the cash flows generated by the sale of good A (good
B). Because the aim of the project is above all to make product A, the
investment made in year 0 is here assumed to be fully invested in asset A.
Every internal rate of return for the project, denoted a + bi, satisfies the
following equation:

−15 +
3∑

k=1

6 + 0.5i

(1 + a + bi)k
= 0

For our numerical illustration, of the three corresponding internal rates of
return, we shall consider that equal to 0.098 + 0.047i. We therefore have
ρA = a + b = 14.5% and ρB = a − b = 5%.

The project can in this way be considered as a main investment gener-
ating an expected return of 14.5% in relation to good A. The cash flows
generated by good B offer an expected return of 5%.

In order to enrich the analysis, we can now reverse the problem by
assuming that the expected cash flows from goods A and B must be dis-
counted at the respective rates of 14.5 and 5%. One first possibility would
be to perform a net present value calculation based on the complex rate
0.098 + 0.047i obtained by considering that 14.5 and 5% reflect the ex-
pected returns on assets A and B, respectively. In accordance with our
previous calculations, the net present value obtained is, of course, zero.
The next possibility is to apply the classic valuation process in corporate
finance, which is to discount each cash flow at a rate reflecting its risk. The
net present value of the project then becomes:

−15 +
3∑

k=1

6

(1 + ρA)k
+

3∑

k=1

0.5

(1 + ρB)k

= −15 +
3∑

k=1

6

(1.145)k
+

3∑

k=1

0.5

(1.05)k
= 0.18

Although small, the net present value is not zero. The discrepancy
observed here comes from the fact that the two calculations are based on
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quite different assumptions. In the classic approach, it is implicit that the
flows generated are reinvested in an activity presenting the same risk. In
our approach, it is assumed that the flows generated are partly invested
in an activity with a different risk. The advantage of our approach lies in
the fact that it enables cash flows with different risks to be discounted at a
single (but complex) rate.

Furthermore, by using (1), (3), and (4), we can determine the series of
WAER associated with the complex rate of return 0.098 + 0.047i. Let us
begin with the discount rate to be applied to the value of the cash flows in
year 3:

U2 + iv2 = 6 + 0.5i

1.098 + 0.047i
= 5.474 + 0.221i

α2 = 5.474

5.474 + 0.221
= 0.961

w2 = (0.961 × 0.145) + ((1 − 0.961) × 0.05) = 0.141

Proceeding in like fashion, we obtain w1 = 0.143 and w0 = 0.145. Equa-
tion (5) becomes:

−15 + 6.5

1.145
+ 6.5

1.145 × 1.143
+ 6.5

1.145 × 1.143 × 1.141
= 0

CONCLUSION

This article shows that complex rates of return have meaning. To provide
an interpretation, we show how a portfolio made up of amounts invested in
two distinct assets A and B can be capitalized at a complex rate of interest.
This rate defines the return on each asset over the period considered and
the amount of asset A exchanged for asset B at the end of the period. In
order to introduce our approach we considered that the two assets were
subject to different risks and therefore had different expected returns. As
a result, a series of real rates of return can be associated with a complex
rate of return. Each one of these real rates is the portfolio’s return expected
during a given period and is therefore a weighted average of the returns
expected on assets A and B. We are aware of the apparently limited practical
interest of the interpretations proposed in this article. However, as Osborne
(2005) emphasized, “Many areas of finance remain unexamined in the
light of the complex solutions to the equation” (p. 171). Giving meaning
to those solutions can therefore throw new light on the problem under
consideration. In addition, by considering joint products whose markets
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have different risks, we show that manipulating complex cash flows may
have practical interest.

REFERENCES

Chambers, D.R., Harris, R.S. and Pringle, J.J. (1982) Treatment of financing mix in
analyzing investment opportunities. Financial Management, 8, 24–41.

Dorfman, R. (1981) The meaning of internal rates of return. Journal of Finance, 36,
1011–1021.

Hartman, J.C. and Schafrick, I.C. (2004) The relevant internal rate of return. The
Engineering Economist, 49, 139–158.

Hazen, G.B. (2003) A new perspective on multiple rates of return. The Engineering
Economist, 48, 31–51.

Osborne, M. J. (2005) On the computation of a formula for the duration of a bond
that yields precise results. Quarterly Review of Economics and Finance, 45, 161–183.

Pierru, A. (2009) The weighted average cost of capital is not quite right: A comment.
Quarterly Review of Economics and Finance, 49, 1219–1223.

APPENDIX

Let ρ be the modulus and θ (∈]−π, π ]) the phase angle of the capitalization
factor 1 + a + ib, where:

1 + a + ib = ρ(cos θ + i sin θ ) = ρeiθ = eln ρ + iθ

This formulation suggests a straightforward interpretation of the modulus
and phase angle of a complex capitalization factor. For this we shall define
an “instantaneous” complex rate of interest to make it possible to capitalize
and discount a portfolio in continuous time. This definition generalizes the
classic case of a real rate of interest in continuous time.

We now introduce directly the instantaneous rate of interest ln ρ + iθ .
By definition, investing in t a portfolio f (t) (formed of the amounts invested
in assets A and B) at this rate for a period dt leads to a portfoliof (t + dt),
where:

f (t + dt) = (1 + (ln ρ + iθ )dt) f (t) (A1)

By rearranging Equation (A1) we obtain:

df(t)

dt
= (ln ρ + iθ ) f (t) (A2)
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Equation (A2) is a differential equation on f whose solution takes the
form:

f (t) = f (0)e(ln ρ + iθ)t = f (0)ρteiθt = f (0)(1 + a + ib)t (A3)

Equation (A3) proves that the instantaneous rate of interest ln ρ + iθ de-
fined in continuous time is equivalent to the rate of interest a + ib defined
in discrete time.
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