
Object Oriented Orbits: a primer on
Newtonian physics

Tobi Lehman

2016-03-02 Wed

What does it take to simulate orbits?

Earth

Mars

What we need

Before we can simulate orbits, we need to a few
things

I a model of space to organize the simulated bodies
I a dynamic rule to update the locations of bodies in space

Euclid’s axioms

The first complete model of space ever recorded was
compiled by Euclid in ancient Greece.

Axiom 1

Between any two points A and B , a line segment L
can be drawn

A

BL

Axiom 2

A line segment L can be extended indefinitely to a
larger line segment L′, that contains L

A

BL
L’

Axiom 3

A circle can be drawn at any point with any radius

P

Axiom 4

All right angles are congruent

Axiom 5 (The Parallel Postulate)

Given a line L and a point p not on the line, there is
exactly one line L′ through p that doesn’t intersect L

L

L’
p

Theorems
From these five axioms, we can deduce many useful
things, the most useful for our purposes will be the
Pythagorean theorem.

A

B

C

A2 + B2 = C 2

We can use this to compute distance

Axioms 1 and 2 and vectors

Vectors are directed line segments, which can be
scaled by real numbers, so axioms 1 and 2 are
relevant for vectors

1. Given any two points A and B , a vector ~v exists whose
tail is A and head is B

2. Given any vector ~v and any real number c , c~v extends ~v
by a factor of c

A

BL

Some terminology

We call the initial point of a vector its tail

The final point of the vector is called its head

tail

head

Vectors can be added
Given any two vectors ~v and ~w with the same tail,
their sum ~v + ~w can be visualized using a
parallelogram:

~v

~v + ~w

~w

This uses axiom 5, and this operation is commutative

Vectors and coordinate systems
Given a coordinate system, we can represent vectors
using pairs (2D) or triples (3D) of real numbers:

There is a special point, ~0 which is just the origin.

x

z

y

3

4

-2

(2,3.5,-2)

Vectors have a ’dot product’

Given any two vectors ~v = (v1, v2, v3) and
~w = (w1,w2,w3)

their dot product ~v · ~w = v1w1 + v2w2 + v3w3

Useful fact: ~v · ~w = |v ||w |cos(θ)

That also implies that
√
~v · ~v is the length of the

vector

Distance between vectors
We are using vectors to represent points in space, so
we will compute the distance between the points V
and W by computing

√
(~v − ~w) · (~v − ~w). This dot

product magic just follows from the Pythagorean
theorem.

x

z

y

~w
~v

~v − ~w

Vectors in Ruby (components)

Now that we have a model of space, we can start
writing some ruby code

I a Vector has components (the coordinates)

class Vector
attr_reader :components

def initialize(components)
@components = components

end
end

Vectors in Ruby (algebra)

I a Vector can be added to another vector
I a Vector can be multiplied by a scalar

class Vector
def +(vector)

sums = components.zip(vector.components).
map {|(vi,wi)| vi+wi }

Vector.new(sum)
end

def *(scalar)
Vector.new(components.map{|c| scalar*c })

end
end

Vectors in Ruby (equality and dot product)

I we can compare two vectors for equality
I we can take the dot product of two vectors and get the

scalar

class Vector
def ==(vector)

components == vector.components
end

def dot(vector)
pairs = components.zip(vector.components)
pairs.map {|(vi,wi)| vi*wi }.

inject(&:+)
end

end

Time

Now we have a decent model of space, we can move
on to the dynamic rule, it will be a way to update the
state of the bodies in space over time.

Relation between position, time and velocity

We can represent the path a body takes using a
function ~x(t).

The velocity is then just the rate of change of
position with respect to time

~v(t) = d~x
dt

Relation between velocity and acceleration

Similarly, the acceleration is the rate of change of
velocity with respect to time

~a(t) = d~v
dt

Newton’s 1st Law states that

Bodies travel in straight lines with constant velocity
unless a force is acting on it

~x(t) = ~x0︸︷︷︸
initial position

+ ~v0︸︷︷︸
initial velocity

t

Newton’s 2nd Law states that

The vector sum of forces acting on a body is its
acceleration times its mass∑

j

~Fij︸ ︷︷ ︸
sum of all forces acting on the i-th body

= mi~ai

Note that forces are represented as vectors

Newton’s Law of Universal Gravitation

~rij

~̂rij

mi

mj

~Fij =
(
G

mimj

|~rij |2

)
~̂rij

Bodies in Ruby

the Body class should have a read-only mass

along with a position and a velocity

class Body
attr_reader :mass
attr_accessor :position, :velocity

def initialize(mass:, position:, velocity:)
@mass = mass
@position = Vector.new(position)
@velocity = Vector.new(velocity)

end
end

Forces on Bodies in Ruby

Bodies have a method to compute the gravitational
force acting on it from another Body.

class Body
def force_from(body)

rvec = body.position - position
r = rvec.norm
rhat = rvec * (1/r)
rhat * (Newtonian.G * mass * body.mass / r**2)

end
end

the Universe

It’s very big
- Douglas Adams

the Universe in Ruby

The final class will be Universe, it organizes all the
bodies
class Universe

attr_reader :dimensions, :bodies

def initialize(dimensions:, bodies:)
@dimensions = dimensions
@bodies = bodies

end
end

it also has a number of dimensions, we can use this to
make sure the bodies are all in the same kind of space

the Enumerable Universe

Since force is computed pairwise, we create an
iterator for pairs of distinct objects

class Universe
def each_pair_with_index

bodies.each_with_index do |body_i, i|
bodies.each_with_index do |body_j, j|

next if i == j
yield [body_i, body_j, i, j]

end
end

end
end

The main simulation loop

class Universe
def evolve(dt)

forces = bodies.map{ |_| zero_vector }
each_pair_with_index do |(body_i, body_j, i, j)|

forces[i] += body_i.force_from(body_j)
end
bodies.each_with_index do |_, i|

a = forces[i] * (1.0 / bodies[i].mass)
v = bodies[i].velocity
bodies[i].velocity += a * dt
bodies[i].position += v * dt

end
end

end

The server

We can serve this up to a browser using

I WEBrick for HTTP
I websocketd for piping STDOUT to a WebSocket server

Fork off an HTTP server
rd, wt = IO.pipe
pid = fork do

rd.close
server = WEBrick::HTTPServer.new({

:Port => PORT,
:BindAddress => "localhost",
:StartCallback => Proc.new {

wt.write(1) # write "1", signal start
wt.close

}
})
trap(’INT’) { server.stop }
server.mount("/", WEBrick::HTTPServlet::FileHandler, ’./examples’)
server.start

end
...

Shell out to websocketd

websocketd converts standard input and output into
a fully functioning websocket server, so we can just
puts out the universe state

examples = ["binary.rb", "ternary.rb", "random.rb", "figure_eight.rb"]
index = ARGV.last.to_i
Shell out to websocketd, block until program finishes
system("bin/websocketd \

-port=8080 \
ruby #{examples[index]}")

Process.kill(’INT’, pid) # kill HTTP server in child process

Binary Star system

Our first application is going to be simulating a
binary star system, with two equal-mass stars

m

−~v m

~v

Find initial conditions
The two bodies will be traveling in uniform circular
motion, so the following relation holds:

a = v2

r

r

~v

|~v | = v

|~a| = a (centripetal acceleration)~a

Given the masses and the distance r , we can figure
out a:

a = (Gm2/4r 2)/m = Gm/4r 2

Substituting a back in to get v

v =
√

(Gm/4r 2) ∗ r =
√
Gm/4r

Run simulated binary star system

Pause to run simulations

The Three Body Problem

With only two bodies, it turns out to be possible to
solve the equations of motion for all time, exactly.

With three or more bodies, it is in general impossible

However

The three body problem has been studied since 1747,
and there are some well known examples

The "Figure Eight" Three Body Orbit

The paper "A remarkable periodic solution of the
three-body problem in the case of equal masses" by
Alain Chenciner and Richard Montgomery works out
an orbit that looks like this:

The initial conditions
~x1 = [0.97000436,−0.24308753]; ~x2 = −~x1

~x3 = ~0

~v3 = [−0.93240737,−0.86473146]

−2~v1 = −2~v2 = ~v3

Run simulated three-body orbit

Pause to run simulations

