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Abstract
We investigate a variant of the SZR model[1] with a time dependent term to simulate the type of 

zombie infestation depicted in the movie '28 Days Later'. In the movie, the zombies would only last 
about a month before dying. We predict that this time dependence will significantly change the 
dynamics, potentially even allowing for equilibria between nonzero values of the susceptible (S) and 
zombie (Z) populations.

The Basic Model and it's Modification

The model used in Munz et al[1] is based off of an SIR model that models real infectious 
diseases, the difference is that the SZR model allows for the removed (dead) population to contribute to 
the zombie (undead) population, the model can be visualized as follows:

Where Π is the constant birth rate, δ is the 'natural' death parameter, β is the transmission 
parameter, ζ is the zombie parameter and α is the defeated zombie parameter. The differential equations 
based on this model are:

dS
dt

=Π−βSZ−δS

dZ
dt

=βSZ+ζ R−αSZ

dR
dt

=δ S+αSZ−ζ R

In [1], the above equations are simplified by investigating short time scales, where the birth and 
natural death rates are unimportant, thus setting Π=δ=0. In this paper, long term effects are explored (so 
nonzero values of Π and δ are assumed). Also, the model is modified to have a parameter for Z that is 
analogous to δ, this is the '28 Days Later' parameter, which we call Ω.
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The Modified Model
We assume that that rate at which the zombies expire is proportional to the zombie population 

value Z, so the modified model is:

Note that the ΩZ term does not flow into the removed (dead) population, because that would 
feed back into the zombie population. The point of this term is to model what happens when an 
infected body is completely worn out, that means that there is no hope of it being re-used, it is expired. 

The differential equations corresponding to this new model are:

dS
dt

=Π−βSZ−δS

dZ
dt

=βSZ+ζ R−αSZ−ΩZ

dR
dt

=δ S+αSZ−ζ R

Equilibrium point analysis: Is coexistence possible?

We begin by looking for equilibrium points and then analyzing their stability. Setting the above 
equations to 0 and solving for (S,Z,R) we have:

S0=
ΠΩ

βΠ+δΩ

Z0=
Π
Ω

R0=
αΠ2+δΠΩ
βζΠ+δζΩ

Using values from [1] for the parameters, α=.005, β=.0095, δ=.0001 and ζ=.0001. Also, from 
numerical experiments, the values Π=.6 and Ω=.1 were used. Substituting these values for the 
equilibrium point, we have (S0,Z0,R0)=(10.5079, 6, 3162.87), this is the equilibrium point we will be 
analyzing.
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We proceed by computing the Jacobian of this system about the point (S0,Z0,R0).

When the values of all the parameters are substituted in, the following matrix results:

The Eigenvalues of this matrix are -0.0549072 + 0.0518189i, and -0.000100175, all three real parts are 
negative, so this equilibrium point is stable! This means that initial conditions near (10.5079, 6, 
3162.87) in phase space will tend toward equilibrium!

Observe the phase space plot of the linearization in the SZ-plane near the equilibrium point:

The above phase space plot was generated in Wolfram Mathematica 8. The horizontal axis is the 
susceptible value, and the vertical is the zombie value, the entire plot is centered about the origin 
because of the linearization technique used. The origin represents the point (10.5079,6,3162.87), but 
the R axis is ignored.

Numerical Simulations
We implemented this system of ODEs using Euler's method in MATLAB, many initial 

conditions were explored, all with the same long term results:



Of all of the different initial conditions, the long term values of about 3 zombies and 21 susceptibles 
are always found, this was suggested by the negative real parts of the eigenvalues. The surface 
(S,Z,R)=(3, 21,R) appears to be an attractor, this is incredibly good news! Given that zombies expire, 
an outbreak of them may not be a doomsday after all!

To see that this model reduces to the basic one proposed in [1], we set Π=δ=Ω=0 and run the 
simulation for 200 time steps:

Varying the initial conditions, we see that the long term behavior appears the same, zombies win, 
humans lose:



If we set  Π>0, δ>0 but keep Ω=0, we recover the basic model, but now we explore more long term 
behavior, now, since the birth and death rates are positive, the zombie population grows without bound 
and the humans dwindle again to 0:



Conclusion

Since the main difference between the basic model [1] and the modification is the  Ω term, this 
modification is solely responsible for the existence of the stable equilibrium that enables human-
zombie coexistence. For the sake of humanity, let us hope that if a zombie outbreak were to occur, they 
would expire in a manner similar to that depicted in “28 Days Later”.

(MATLAB code included in Lehman_final_project.m)
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